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A model Ibr estimating second and third virial coefficients, which has been used 
successfully to rcpresent the behavior of pure gases and binary mixtures, was 
applied to a ternary mixture. An estimate for the ternary third virial coefficient, 
Ct_, 3, was added to the model. Three experimentally determined binary interac- 
tion parameters were also used. The model has been applied to the ternary 
mixture CH_,F_ ,+CF,CHF_,+CF3CH,F  ( R 3 2 + R I 2 5 + R I 3 4 a ) .  The rest.Its 
are useful Ibr calculating gas-phase densities, thermodynamic properties, and 
fugacities Ibr phase equilibrium calculations. The use of such models leads 
to a considerable economy of effort in the case of multicomponent mixtures. 
Examples of the thcrmodynamic properties are given for the equimolar ternary 
mixture in the range from the dew-point temperature to 400 K at pressures of 
0.5, I, and 2 MPa. Calculated densitics and speeds of sound are compared with 
new experimental values Ibr at near-equimolar composition. 

KEY WORDS: density: RI34a: R32: RI25: refrigerants; ternary mixture: 
thermodynamic properties: viria[ coefficients. 

1. I N T R O D U C T I O N  

It is generally agreed that many refrigeration systems designed for the 
future will use, as working fluids, binary and multicomponent mixtures 
whose compositions can be tailored to produce properties appropriate for 
the required application. Relatively few experimental results have been 
reported for binary refrigerant mixtures, however, and almost none have 
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been reported for multicomponent mixtures. Therefore, thermophysical 
properties calculations for these systems, produced at present by available 
computerized properties software, can only be considered to be approxi- 
mate. Furthermore, since those properties packages generally rely on 
global equations of state which are semiempirical and thus have only weak 
theoretical foundations, the approximations may not be reliable. 

The virial equation of state for the gas phase, on the other hand, does 
have a firm theoretical foundation. It also uses theoretically based mixing 
rules, which can be applied to multicomponent mixtures. It therefore offers 
obvious advantages, at least for gas-phase calculations. However, con- 
siderable experimental effort is required to produce the virial coefficient 
data necessary to characterize a mixture of arbitrary composition. For a 
binary mixture, sufficient P V T  data are required for a minimum of four 
compositions (including the pure components). Data for more composi- 
tions would provide the desired overdetermination and thus better 
accuracy. For a ternary mixture, this minimum experimental ettbrt 
increases to 10 compositions; for a quaternary mixture, 20 compositions 
are required: etc. It is obvious that the experimental effort quickly becomes 
overwhelming. In addition, unless some guidelines are available, more than 
a minimal amount of P V T  data would be required for each composition. 
If, instead of a virial equation, one of the cubic equations of state were 
used, somewhat less experimental effort would be required (6 compositions 
instead of 10 for a ternary), albeit at the cost of some accuracy (especially 
for these polar gases). In the light of these considerations, it is not 
surprising that so few experimental studies are available for ternary and 
higher-order mixtures, with the exception of some data for specific com- 
positions. 

With the above-mentioned difficulties in mind, we present here model- 
calculated second and third virial coefficients for a ternary mixture of 
refrigerant candidates. The mixture of CH,F~ + CHF_~CF 3 + C F 3 C H , F  
(R32 + R125 + R134a) is considered to be an important candidate for use 
in some future refrigeration systems. The model, described recently by 
Weber [ l ], allows estimation of all of the necessary interaction virial coef- 
ficients so that the properties at any composition can be calculated. This 
model has been used successfully to calculate the properties of pure fluids 
and binary mixtures I-1-3]. For pure fluids it has good predictive 
capability. For each binary system a binary interaction parameter is 
necessary. For the ternary system of interest here, the necessary binary 
interaction parameters were obtained from a minimum amount of P VT 
data on equimolar binary mixtures of the constituents [2]. 

The next section briefly summarizes the calculation of the virial coef- 
ficients and gives some examples. Comparisons are made with some recently 



Virial Coefficients of a Ternary Mixture of Refrigerants 163 

obtained experimental data at one composition. Appendix A provides the 
necessary mixing rules, and Appendix B tabulates the equations necessary to 
calculate the commonly used thermodynamic properties. 

2. T H E  M O D E L  

2.1. Second Virial Coefficient 

The model used for the second virial coefficient is based on the one 
given by Pitzer and Curl [4]  and improved by Tsonopoulos [5] ,  

B P c / R T  ~ = f~(Tr) + mf2(Tr) + f3(Tr) ( 1 ) 

where B is the second virial coefficient, P~. and Tc are critical parameters, 
oJ is the Pitzer acentric factor, R is the gas constant, and Tr=  T/Tc. The 
.Fs are considered to be universal functions of Tr. T h e p s  used are the ones 
given by Tsonopoulos, as modified by Weber, 

.f~ =0.1445 - 0 . 3 3 / T r - O . 1 3 8 5 / T ~  -O.O121/T~-O.OOO608/T 8 (2a) 

./2 = 0.0637 + 0.33 I /T~ - 0.423/T ~ (2b) 

J~ = a / T  6 (2c) 

7 where a = - 9  • lO ll~, and p~ is the reduced dipole moment, 

/zR = 0.9896 x 1051t2P,:/T~. (3) 

with p being the dipole moment of the molecule in debyes and T~ and P~ 
are in kelvins and bars. The properties needed for each of the three com- 
ponents are given in Table I. This formulation for B(Tr) has been com- 
pared with the best available experimental data for polar halocarbons and 
other fluids in Refs. 1-3, and in general the agreement is within about 
1-2 % of B. 

2.2. Third Virial Coefficient 

The third virial coefficient used here is a development of the form 
proposed by Van Nhu et al. [6] ,  who related it to the second virial coef- 
ficient, 

C =  Ch + ( B - B h )  2 ~ .~ - (Tr )  (4) 

where Bh and Ch are the virial coefficients of the hard-sphere molecule, ~ ,  
is a coefficient which sets the value at the critical temperature, and .~(Tr)  
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Table !. Parameters  for Calculating Virial Coefficients and The rmodynamic  Properties: 
T . = 2 3 3 . 1 5  K (Dipole  Moments  Were Taken from Refs. 18 and 19)" 

R321 [ ) R12512/ RI34aI31 

Rcl: Nos. 14. 15 14. 16 14. 17 
T, (K)  351.36 339.3 374.2 
P~ ( M Pa ) 5.793 3.629 4.055 
t'~ (L- too l  I1 0.122 0.210 0.201 
I~ ( D ) 1.98 1.56 2.06 
~,~ 0.277 0.304 0.323 
It "1 7",0 ( J - tool - i ) ] 9686 2(i)668 23235 
S " ( T , , ) ( J - m o l  i . K - i )  88.596 91.349 93.757 

"k  12 = 0.028: k ~- = 0.030: k_~ = 0.023 (given incorrectly ill Ref 2 ). 

is a simple function of temperature which, for nonassociating molecules, 
takes the value unity at TL.. We use the simplification Bh = 0.36v~, where v~. 
is the critical molar volume and, frona the hard-sphere model, Ch= 
0.625B h. The quantities ~ and .Yr(T r) are functions of/~R, 

"~, = c, + c2/L~ (5a) 

.~; ( r r )  = ~  + ( 1  c 6  ) / T :  (5b) 

where 

= c3 + c4/li"~ (5c) 

The c's are taken to be universal constants and have the values, c~ =0.17, 
c , =  1.85 x 10 s c3 = 1.584, and c4 = - 4 . 9 x  10 '~. The form of Eq.(5a)  
gives a dependence on / t  which approximates the behavior of C calculated 
with the Stockmayer potential [7] .  The dependence given in Eq.(5c) 
allows the location of the maximum value of C to vary as a function of the 
dipole moment. The tbrm of Eqs. (4) and (5) shows that, once B has been 
calculated, calculation of C requires only one additional substance-specific 
parameter, vc. 

2.3. Mixtures 

Mixing rules for B and C in multicomponent mixtures have a firm foun- 
dation in statistical mechanics. Mixture virial coefficients are given by [ 8 ] 

I I  H 

B,,, = ~ ~, Bi, x i x /  (6a) 
i = 1  i =1  
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and 

pl 

i = [  j = l  / , - I  

for an n-component mixture, where the x's are the component mole frac- 
tions. For  a virial equation of state terminated after two coefficients, it is 
necessary to consider only two- and three-molecule interactions (e.g., B 0 
and Ciik) in a mixture of any number of components. Equations (1) and (4) 
apply to the interaction virial coefficients as well as the pure fluid virials. 
They require mixing rules for the substance-specific parameters. The rules 
used were given in Refs. 1-3, and they are repeated here in Appendix A. 

As shown in the appendix, calculation of B o also requires a set of 
binary interaction parameters, ki/, for each binary pair in the mixture. In 
principle, these can be determined from one reliable P V T  datum for each 
binary mixture at some convenient temperature. In practice, it is generally 
preferable to have some minimal set of data, such as a set of Burnett 
expansion data on one isotherm. Such data and binary parameters for the 
mixture considered here were measured in Ref. 2. Due to a calculation 
error, the binary parameters given in Ref. 2 were incorrect. The correct 
values for these three binaries are given in Table I. Binary parameters 
obtained from application of cubic equations of state to binary vapor-  
liquid equilibrium data on non polar or weakly polar systems often have 
similar values, and they can be used here. However, such parameters found 
for strongly polar systems (e.g., R32 + R134a) have very different values. 
This difference appears to be due to the fact that the cubic equations of 
state do not represent the overall behavior of strongly polar fluids very 
well. 

The mixing rules given have been used successfully to reproduce the 
best available data for binary mixtures. Application to a ternary mixture 
requires only one new quantity, C0k, the ternary third virial coefficient. 
This quantity was estimated with simple extensions of the mixing rules used 
in the past, and given in Appendix A, 

/~ s<:~ = (It l~,, + I t  R,~ + la 1< , ) /3  

C,,,>~ = 0.625( B~,,e + B~,,.~ + B~,,_.~)/3 

(7a)  

(7b) 

(7c) 

and the replacement, 

(B - Bh )2 __+ ((Bll -- Bh it )(B_,_, - -  Bt~22)( B33 - Bh33 )) 2 3 (7d) 
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in Eq. (4). The quantities on the right-hand side of Eqs. (7) are defined in 
Appendix A. Then, for example, 

C i 2 3  m_ C h l 2 3  -t- { ( B I I  - -  B h l l  ) ( B 2 2  - - B h 2 2 ) ( B 3 3  - B h 3 3 )  } 2 3 

- -  6 ) / T r t 2 3 )  ( 8 )  

with 

RI2~ 

3 
(~ = ('3 + ~4l tn t ,_ ,  

T r l _ 3  = T/Tct 23 

Similar lbrms would be applicable lbr the interaction coefficients C,z and 
Cii i with the mixing rules and defnitions from Appendix A. These simple 
additional rules allow the model to be applied to a mixture of any number 
of components. 

3. RESULTS A N D  C O M P A R I S O N S  

The second and third virial coefficients for the equimolar ternary 
mixture have been calculated with the above equations, and they are 
tabulated in Table II between 240 and 400 K. Experience with similar pure 
fluids and binary systems indicates that the best results are obtained 

Tab le  !1. IModeI-Es t imated  Second  a n d  T h i r d  Virial 

Coeflicients of the Equimolar Ternary Mixture o1 
R32 + RI25  + R I 3 4 a  

T I 0 ~B I O'C 
(K)  [ L . m o l  ~1 I L . m o l  ~)-~ 

2411 - 663.7 - 67.503 

260 528.7 - 1,891) 

2811 432.3 19,32S 

3lift - 360.4 24,90 I 

320 3O5. I 24,844 

3411 261.3 22,876 

360 - 225.8 20,423 

380 196.4 18,023 

400  - 17 [.8 15,864 
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when these coefficients are used at densities less than about 1.5 tool. L 
(or P "- 2.5 MPa), where they can be used to calculate a pressure with an 
uncertainty equal to about 1-2% of the nonideality of the gas. They 
should be useful for calculating saturated vapor densities up to a reduced 
temperature of about 0.9. Uncertainties begin to increase rapidly when the 
gas nonideality reaches about 40%, i.e., IBp+ Cp~-I >~0.4, where p is the 
molar density. The above guidelines apply to polar gases. For a light, non- 
polar gas, such as methane at 275 K, the present estimation method would 
produce good restllts to pressures as high as 10 MPa. 

Results of the present work have been compared with the preliminary 
results from two recent sets of experimental measurements for this ternary 
mixture. Hurly [12]  has made speed-of-sound measurements in the tem- 
perature range 240-400 K at pressures to I MPa or 80% of the dew-point 
presstire, whichever is less. Schmidt [13] has made PVT measurements 
with a Burnett/isochoric apparatus in the range 313-453 K. In both 
cases, results were obtained for the mixture composition R32(0.346)+ 
R125(0.300)+ R134a(0.354). Figures I and 2 compare model-generated 
values for that composition with those two sets of results at the 
experimental temperatures. The figure shows that the model agrees with the 
experimental results within the uncertainty estimates given above, i.e., 
within 1-2% of the nonideality for pressures up to the dew point or 
2.5 MPa, whichever is less. 

0.8 

0.4 

-0.4 

-0.8 

# % �9 

i �9 ! 

0 6 12 18 24 30 
P, bar 

Fig. 1, Rehitive differences between the model-calculated den- 
sities and exl3erimental values from Schmidt [13] for IIle ternary 
mixture, R32(II.346)+ RI25(0.300)+ RI34a(0.354J: l ,  313 K: O, 
333 K: i .  353 K" i., 413 K: V, 453 K. 
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Fig.  2. R e l a t i v e  d i l l c rcnccs  b e t w e e n  the  m o d e l - c a l c u l a t e d  speed  

Of sound and the experimental values frori3 Hur ly  [ 12] Ibr the 
t e r n a r y  m i x t u r e .  R 32( 0 .346 ) + R 125( 0 .300 ) + R 134a( 0 .354 ). 

Virial coefficient formulations are also useful lbr calculating the ther- 
modynamic properties of the mixture. Sample calculations for p, H, S, and 
Cp of the equimolar mixture at 0.5, 1, and 2 MPa from near the estimated 
dew curve to 400 K are given in Table III. The temperature dependence of 
the properties was calculated with the constant-pressure heat capacity of 
the ideal gas. For the mixture, this can be expressed as 

C(} _ \.  C ( i  (} . (! I ' m - - "  I i,I "~ . \ 2 C p 2  -{--x3 Ci,3 (9) 

where the heat capacities are understood to be functions of temperature. 
The ideal-gas heat capacity of R134a was taken from Goodwin and 
Moldover [9] ,  that of RI25 from Gillis [10] ,  and that of R32 from the 
Thermodynamics Research Center tables [ 11]. Then changes of the ideal- 
gas properties with temperature are given by A H ' =  I CC~',,, dT and AS 'j= 
I (C~1',,,,/T) dT. The limits of the integration are from a reference tem- 
perature, 7",,, to T. In order to avoid negative numbers in the table and to 
contbrm to convention, the values of the enthalpy and entropy for each 
pure component were made consistent with Hr. = Sl. = 0 for the saturated 
liquid at T~, = 233.15 K. The corresponding starting values for the ideal gas. 
H"(T.) and S"(T.) (at P=0.101325 MPa), are given in Table 1. The rela- 
tionships used for calculating the density dependence of the properties are 
summarized in Appendix B. With those relationships, the real-gas H, S, 
and C~, at temperature. T, were calculated at the density corresponding to 
the required pressure. 
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Table Ill. Calculated Thermodynanlic Properties of the Equimolar Ternary Mixture of 
R32 + RI25 + RI34a 

T /.' H S C r̀  
(K) (moI .L  - I )  (J.mol i) ( J . r n o l - I . K  - I )  (J.mol I . K - I )  

P = 0.5 M Pal 

280 0.23914 23,486 87.999 82.9 

300 0.21715 25,129 93.668 81.9 

320 0.19989 26,772 98.968 82.6 

340 O. 18572 28,437 104.017 84. I 
360 0.17374 30.138 108.877 86.0 

380 0.16341 31,880 113.586 88.2 

400 0.15437 33,666 I 18.167 90.5 

P = 1.0 M Pal 

300 (/.48139 24.283 85.750 94.6 
320 0.43020 26.121 91.683 90. I 

340 0.39253 27,910 97.108 89.2 

360 0.36276 29.697 102.213 89.7 
380 0.33823 31.502 107.094 90.9 

400 0.31745 33,337 111.800 92,6 
P = 2.0 M Pa 

32(1 1.06886 24,374 81.589 [ 26.4 

3411 0.90330 26,655 88.510 106.2 
361) I).80281 28,706 94.374 100.1 
380 0.73063 30.683 99.718 98.0 

4(.)0 ().67449 32.639 104.737 97.9 

4. SUMMARY 

A model for estimating the second and third virial coefficients of fluids 
has been extended to multicomponent mixtures. As an example, sample 
results are given ]br the thermodynamic properties of the equimolar ternary 
mixture of R32+R125+R134a at three pressures. In addition, the 
calculated gas-phase densities and speeds of sound in a ternary mixture of 
these refrigerants at one composition have been compared with the only 
experimental values available for that mixture; they are found to be in 
relatively good agreement. The model provides a last, economical means of 
estimating the properties of a mixture of any composition. 
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A P P E N D I X  A 

The model is extended to binary mixtures with the assumption that 
the interaction second virial coefficient, B,2, has the same corresponding- 
states temperature dependence as the pure-component coefficients. Mixing 
rules are necessary tbr the substance-specific parameters. We used the rules 
most often employed, 

T~.j_. = ( To, T~.2)' -~ ( I -k12) ( A I )  

co,._ = (co, +co2)/2 ( A 2 )  

P~,2=4T~.,,_(P~,vd/T~, + P~2v~2/T~_)/(v~,3 +v~.2~) ~ (A3) 

ltE~,., =0.9869 x 105ltlp~P~2/T~12 (A4) 

where T~ and Pc are understood to be in units of kelvin and bar, 
respectively, and v~. is the critical molar volume. Values of the binary 
interaction parameters, k u, are given in Table I. 

For the third virial coefficients of mixtures, no new parameters are 
needed, but additional mixing rules are required. We use the definitions 

P Rii/= (It  ~i,. + 2/L RU)/3 

I t  Ri l l  = ( I I  Rti 3t- 2,/I RU)/3 

Bh u = (Bh~ + Bh j ) /2  

Cj,,u = 0.625( B~,, + 2B~,u)/3 

Chin = 0.625( B~t + 2B~,u)/3 

and in place of (B i t -Bh#)  2 in Eq. (4), we substitute 

[ ( B / t _  B l ~ / / ) ( B i t  - Bhu)-'] 2 3 

(A5) 

(A6) 

(A7) 

(AS) 

(A9) 

(AI0) 

o r  

[( Bii - Bhi,)( Bit - -  Bh0) 2 ] 2 3 (A l l )  

In constructing a cross virial, such as Cut, we use Eqs.(4) and (5) 
calculated with ItRm, with Eq. (A10), and with T~.,. It should be noted here 
that Eqs. (A51 and (A6) above are different fiom the formulation tbr these 
quantities given in Refs. 1-3. The present formulation is more appropriate, 
although the numerical differences in the value of C are quite small. 
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A P P E N D I X  B 

Calculation of the gas-phase thermodynamic properties began with the 
calculation of the properties of the ideal gas at the desired temperature and 
a pressure P =  0.101325 MPa, as shown in Section 3. Then, since calcula- 
tions are more easily performed in terms of density, the mixture virial coef- 
ficients were used to determine the molar density, p, at the desired pressure. 
Then, enthalpy and entropy were calculated along isotherms from 

ff 
J 

H ( T , p ) = H ~  [ P / p ~ - - ( T / p ~ - ) ( S P / S T ) , , ] d p + ( P / p - R T )  (B1) 
} 

S ( T , p ) = S " ( T ) - R I n ( R T p / P ~ , ) +  , [ R / p - ( 1 / p ' - ) ( S P / S T ) p ] d p  (B2) 

where P~, =0.101325 MPa. These equations can be written in terms of the 
virial coefficients, 

H( T, p) = H~ T) - R T 2 p B  ' - RT2peC' /2  + ( P/p - R T )  (Bla) 

S ( T , p ) = S ~ ( T ) - R I n ( R T p / P , , ) - R p ( B +  T B ' ) - R p 2 ( C +  TC') /2  (B2a) 

where B' and C' refer to the temperature derivatives of B and C, respec- 
tively. For the heat capacity, we use 

C',!(T) = C' ] , (T)  - R ( B 3  ) 

C , . ( T , p ) = C ~ ! ( T ) - R T p ( 2 B '  + p C '  + TB" + TpC"/2)  (B4) 

Cp( 7", p) = C,.( T, p) + ( T/p2)(,~/2/.~) (B5) 

where 

,;] = P / T +  RTp2( B' + pC' )  

.~=RT(1  + 2 B p + 3 C p  2) 

(B6) 

(B7) 

For the purpose of comparison with the experimental results of Hurly 
[ 12], the speed of sound, u, was calculated from, 

u =  ( ( Cp/C,.)(.~/M) ) I 2 (BS) 

where M is the molecular weight of the mixture. 
The required first and second temperature derivatives of the virial 

coefficients can be calculated relatively easily for pure fluids; they can also 
be calculated for mixtures, but they are more easily obtained numerically. 
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